
Evaluation and Testing Report

Testing
We utilised the same test suite format detailed in Assessment 2. We felt this suite format was
comprehensive for the project and made the link between implementation and testing explicitly clear.

Functional
Due to the small scale of the project Unit testing and integration testing have been listed together under
the heading of unit testing. Some unit tests do require multiple parts of the system to run, but each test is
designed to specifically test one single part of the system. As these integration test variants are quite
small (two or three classes at most), debugging with other relevant unit tests should still be
straightforward to discover the exact cause of any issues. Explicit integration testing was again deemed
unnecessary due to the size and format of the system. In particular functionality of the system is not
intended to exist separately so integration testing (outside of that required to ensure all functions had
been tested) does not in fact provide a reasonable indicator of correctness in respect to the requirements.

We proceeded directly to system testing and performed these tests regularly. Whenever changes were
made, we made it policy that changes should be deployed on the team member’s machine in the context of
the game. In addition to this, when faults were found we relied on system testing in debugging mode to
isolate issues and ensure they were not impacting any other functionality. In our final stage of functional
testing we acceptance tested both with the UI against the requirements link to test report and ensuring all
other tests passed. This gauntlet of tests ensured that all tests passed and all requirements were met.
Critical for this stage of development.

Our indication of appropriate quality for the code was met when:

● All tests passed
● All code was commented clearly
● All requirements were met

These indicators are absolute at this point of the project, as this is the final stage of the game
development. There’s no reason requirements shouldn’t be met.

Non-Functional
Performance testing has been informally addressed throughout the project, only catching issues when
they were the likes of memory leaks. To prevent issues arising the system has been deployed on the
client’s intended use-case computers throughout the testing. All GUI and playtesting has been performed
on the intended use-case computers. Due to the low spec requirements of the game, this was not hard
number testing. But ensuring timers behaved correctly and transitions were timely.

Compatibility throughout development, the majority of the team develops and tests on Windows, one
member develops and tests on macOS and Travis CI deploys the tests in a linux environment. This has
ensured full compatibility. However as we are using Java this was unlikely to be an issue provided the
system being utilised has the correct version of the JVM.

Usability was qualitatively tested by fresh users at the end of the development cycle. Mainly to ensure the
system was usable with only the materials provided to the client (the user manual).

https://github.com/jm179796/SEPR/blob/Assessment2_Docs/Test2.pdf

Evaluation
To determine the correctness of our code in relation to the brief we went through our requirements and
compared them to tests we ran by default.

Subjective requirements were to be decided on a vote based system, requiring 100% support of team
members for a requirement to be considered accepted results here.

Alternatively, other requirements that could only be determined by end users (such as ease of use) were
checked with the participants of the usability testing. For checks that failed, efforts were made to correct
them as shown in the Usability Testing report (see Usability below).

Functional Test Report

Unit & Integration
See the results here
We ran 30 individual tests throughout the development cycle. Each corresponding to a function in the
codebase. As mentioned above 100% pass rate was required for these tests. We reached this requirement. If
it had not been reached we would have ensured all failing tests were written correctly and if they were we
would have modified code to perform correctly.

System
Conducted implicitly with performance and Requirements acceptance testing. The system performed as
expected and allowed all requirements to pass with the resources the client wished it to use.

Requirements Acceptance
We ran these tests as a qualitative extension of the system testing. This allowed us to explicitly state all
requirements that hadn’t been implicitly met from the initial Unit, Integration and System tests. The report
can be found here. It was key that all requirements were met at this point. Any other situation would be
classified a failure.

Non-Functional Test Report
Performance, running the game on the client’s intended system works perfectly. Meaning, timers perform
as expected and transitions do not hang. AI calculations and processing times are far below the cutoff
listed in requirements.

Compatibility, as mentioned above the system is compatible with all modern operating systems. We tested
macOS, Linux Ubuntu and Windows 10(The intended and required OS). The game ran as expected on all
with no differences.

Usability
Usability was tested qualitatively; done in order to see how real users would react to the game, whether it
was easy to understand and whether it was fun. The participants were given the user manual to read
through and asked to play one whole game; they were then asked to make comments about the user
manual and the game. Any issues that were raised, we attempted to correct. A second round of testing was
then conducted to assure that the changes were sufficient. The results of the usability testing can be
found here; the document contains a list of consequent changes and rejected changes at the bottom.

https://nicopinedo.github.io/SEPR4/Documents/RA4.pdf
https://nicopinedo.github.io/SEPR4/tests/index.html
https://nicopinedo.github.io/SEPR4/Documents/RA4.pdf
https://nicopinedo.github.io/SEPR4/Documents/UsabilityTests.pdf

Changes to Assessment 3 testing
The previous test suite has been expanded to include the new requirements from Assessment 4. We have
also returned to the format of our tests from Assessment 2. In execution, plan and result format.

Requirement meeting

Final Requirements
Requirement Acceptance Testing

We conducted qualitative requirements acceptance requiring 100% pass rate to conclude the tests as
complete. We took each member of the team and asked them to play a full game (This was combined with
usability testing). If they saw a requirement be fulfilled, they commented on it and marked it passed. This
has produced a readable and clearly complete report. This maps clearly to the requirements and details
how they are met within the game.

UI Requirement testing
We have tested acceptance of all requirements and since all of those requirements are met, we can state
that requirements, related to UI are met as well (list of UI related requirements is here).

https://nicopinedo.github.io/SEPR4/Documents/FinalRequirements.pdf
https://nicopinedo.github.io/SEPR4/Documents/RA4.pdf
https://nicopinedo.github.io/SEPR4/Documents/UTT.pdf

