
Final Architecture and Traceability Report

References to requirements are given in [] and can found here
Link to inherited architecture
Link to updated architecture

Languages and Tools Used

In order to present the system architecture of both the design that we inherited and of the final design, we
used the UML diagram tool which was part of the IntelliJ IDE. The software allowed us to export the UML
diagram as a PNG file. The syntax of the diagram is as follows; orange ‘f’s represent fields, red ‘m’’s
represent methods and purple ‘p’‘s represent properties(getters/setters). Also, arrows that are blue show
inheritance. In addition, a green padlock represents a public attribute/method while a red padlock
represents a private attribute.

Changes To Inherited Architecture

Effects

The way that effects [6] were implemented within the game was completely changed by our team within
assessment 4. Initially, effects were implemented through a class for each corresponding effect. For
example, the ‘earthquake’ effect was applied through the Earthquake.java class. These effect classes
extended the abstract class RandomEvent. While this method of administering effects works, it provides no
scope for implementation of future effects due to the lack of inheritance as each time an effect is created
a new class has to be written for it. As a result, we decided to remove the ‘Earthquake’ and ‘Malfunction’
classes and add four new classes. No other classes were dependent upon the three classes mentioned
therefore there were no side effects when they were removed.

The classes that we added were PlayerEffect, PlayerEffectSource, PlotEffect and PlotEffectSource. These are the
same classes that we used to add effects to the game within assessment 3, we simply ported them over to
this project and adapted them so that they would be compatible with the architecture we inherited. The
justification for the design of those classes for assessment 3 can be found here [link].

Player effects have the function of altering the resources within the player’s inventory whereas plot effects
provide modifiers for the resource yields of plots. These effects appear through the use of an overlay from
the overlay class and are actually implemented through the use of a runnable. The two source classes were
used in order to create the desired effects that were then triggered through the GameEngine class. This
meant the addition of several methods to the GameEngine class that would create, apply and manage the
effects within the game.

Due to these changes, it now means that whenever an effect is to be added to the game, it can simply be
created within the corresponding source class. This is a lot more efficient than creating a new class each
time an effect is to be added as the inherited architecture required.

The effects system was also changed to ensure that precisely one effect (of either type) is imposed for
each player on each turn. This ensures that the game remains somewhat unpredictable and interesting
thereby requiring players to adjust for circumstances out of their control - while also not entirely out of
players’ hands.

https://nicopinedo.github.io/SEPR4/Documents/FinalRequirements.pdf
https://nicopinedo.github.io/SEPR4/Documents/Fractal-A3.png
https://nicopinedo.github.io/SEPR4/Documents/DRTN-A4.png
https://github.com/NicoPinedo/SEPR4/blob/gh-pages/Assessment3/Documents/Impl3.pdf

Table Classes

Within the architecture that we inherited all of the the GUI elements, such as buttons and labels, within the
main game screen were created and manipulated by the GameScreen class. While this class functioned as
necessary, it provided little in the way of maintainability due to it being such a large ‘superclass’.
Therefore, we agreed that it would be best to modularise this class into several different classes. These new
classes were MarketInterfaceTable, PhaseInfoTable, PlayerInfoTable., TradeOverlay, SelectedTileInfoTable and
UpgradeOverlay..

The four classes extend the libGDX ‘Table’ class and are responsible for creating and maintaining all of
their respective buttons and labels. For instance, the PhaseInfoTable creates a label describing the current
phase and updates it every time the phase changes. It is also now responsible for creating and storing the
game timer. As shown by the UML diagram, all of these classes are all created and stored within the
GameScreen class. Each individual table now implements their own drawing functions; the GameScreen
class simply invokes them. TradeOverlay and UpgradeOverlay both extend the Overlay class.

The advantage of this is immediately obvious as now for example if I wanted to create a second market
table I could inherit the new MarketInterfaceTable instead of writing new code within the GameScreen class.

Market Class

As justified within the implementation document, we decided to move any of the GUI elements of the
market, such as buttons and labels, from the Market class into the MarketInterfaceTable and use the Market
Class specifically for the logic of the market. We also moved any of the logic that involved adding functions
to the buttons into the GameEngine class. Because of this, the Market no longer required to make use of
GameEngine and Game objects and therefore no longer required either of them in its constructor. As before,
the Market is stored and maintained within the GameEngine class.

College Selection Screen Removal

We decided to remove the college selection screen from the architecture of the program. This is because it
was redundant due to the fact that players are randomly assigned colleges rather than selecting them. No
other classes were dependent upon this class hence there were no side effects caused by this.

Enums

One subtle change we made to the architecture was the introduction of enums for the resources [5]. This
simply involved changing any references to resources within the architecture to reference the specific
enum of the resource instead. This improved the structure by preventing type errors within the code.

The remainder of the architecture was left untouched as we felt that it did not require any further change
in order to meet our requirements.

Implementation of New Requirements

Chancellor Implementation

In order to accommodate the implementation of the capture the chancellor minigame [13] a new class had
to be created to represent the chancellor entity. The class in question, Chancellor, stores values such as its
location, texture and also the reward that the player gains if it’s captured. It also contains the logic
required to move the chancellor around the map. To allow the chancellor mechanic of the game to function,
the GameEngine will invoke the Chancellor.Activate method within the Chancellor class at a specified time.
When this has commenced, the GameScreen will draw the chancellor on the screen through the use of the
drawer class.

Supporting 4 Players

As the architecture we inherited already supported 9 players, it wasn’t necessary to change the structure
in order to have multiple players. We simply reduced the number of players by changing an integer within
the PlayerSelectionScreen.

Justification For Final Architecture

Overall, we feel that the final architecture of the system hasn’t drifted too far away from the basic abstract
architecture that we designed within assessment 1 [here]. Our philosophy at the beginning of the project
was that every entity represented within the game has its own class and this has been maintained
throughout the process despite the changing requirements.

One aspect of the architecture that we feel we could change in the future is trying to further modularise the
two classes GameEngine and GameScreen. As shown by the diagram, these two classes are by far the largest
within the game and moving some of the code that they contain into separate classes would improve
maintainability and give greater scope for improvement. We tried to begin doing this by creating the table
classes as stated above by moving certain parts of GUI code from the GameScreen class into separate
classes. However, given more time would have liked to further move some of the code from out of the
GameScreen class so that everything graphically related within the main window of the game had its own
individual class to create and maintain the objects it displays.

The GameEngine class is another class that we would have liked to, given the time, refactor further. While we
feel that there isn’t any code that is particularly redundant, there are instances where code could have
been moved into a different class in order to shorten the 1300 lines of code currently within the class. For
example, the setMarketButtonFunctions function could have been moved into the Market class. The downside
of this however would be that we wouldn’t be able to initiate unit tests for the market. This is because
changing the button functions requires use of the GameScreen class, which is currently untestable due to
the drawer overheads.

https://github.com/jm179796/SEPR/blob/Assessment1_Docs/Arch1.pdf

